智通财经APP获悉,国泰君安(601211)发布研究报告称,3D视觉针对工业自动化应用上的“痛点...
智通财经APP获悉,国泰君安(601211)发布研究报告称,3D视觉针对工业自动化应用上的“痛点”,提升缺陷识别的精度和自动化产线在线检测的速度,加速在机器人(300024)引导和移动机器人环境感知场景落地。针对不同自动化领域的专业化定制是3D工业视觉的主要特征,视觉大模型赋能3D工业视觉,降低定制化开发的成本,提升定制化开发的效率,有效拓展应用场景。2022年中国3D工业相机市场规模18.4亿元/yoy+59.9%,GGII预计2027年接近160亿元,复合增速53.8%。
3D视觉针对工业自动化应用上的“痛点”,提升缺陷识别的精度和自动化产线在线检测的速度,加速在机器人引导和移动机器人环境感知场景落地。针对不同自动化领域的专业化定制是3D工业视觉的主要特征,视觉大模型赋能3D工业视觉,降低定制化开发的成本,提升定制化开发的效率,有效拓展应用场景。2022年中国3D工业相机市场规模18.4亿元/yoy+59.9%,GGII预计2027年接近160亿元,复合增速53.8%。
3D视觉技术满足工业领域更高精度、更高速度、更柔性化的需求,扩大工业自动化的场景。
2D视觉技术基于物体平面轮廓,没有办法获得曲度、空间坐标等三维参数,检验精度低。激光三角测量、结构光、ToF、多目视觉等技术一同推动了3D视觉发展。高精度缺陷检验测试场景(如:半导体有图形晶圆检测)技术方面的要求最高,主要是采用激光三角测量、干涉和共聚焦技术;
生产线在线检测和装配最难,需要复杂的解决方案来适应不一样的生产场景,并在振动和环境光干扰下实现高速度和高精度,主要技术是激光三角测量和结构光。仓库自动化(尺寸测量、环境感知、手势识别、随机拣箱)主要是采用结构光和立体视觉。
移动机器人视觉引导最具前景的场景,主要技术包括结构光、ToF、立体视觉。环境感知具备宽视场、高速度(用于实时视觉伺服)、高精度的要求,技术路径尚未确定。
特斯拉Optimus的3D传感模块以多目视觉为主,全身搭载8个摄像头,自研SoC芯片FSD,纯视觉方案硬件成本低,对软件算法要求高。国内外其余厂商多采用3D相机+激光雷达方案,优必选WALKERX的视觉模块采用多目视觉,小米CyberOne的Mi-Sense采用iToF+RGB,追觅采用ToF+结构光,智元A1采用RGBD相机。
过去工业机器视觉主要是针对垂直场景的少量数据来进行小模型训练,模型处理问题的复杂程度受限。23年4月Meta发布通用图像分割大模型SAM,视觉大模型赋能3D视觉,能轻松实现:a.大模型在广泛下游场景中具备优势,有望降低定制化开发成本,提升机器视觉产品毛利率,快速拓展应用场景。B.大模型在零样本或少量样本上表现优秀,机器视觉将在这些领域得以拓展,如从代码驱动变为视觉驱动的机器人、流程工业场景。
在精密检测及测量场景中,原2D视觉头部厂商优势较大;在机器人引导类场景中,内资初创型厂商以快速设计并落地方案的优势,处于领头羊。
在精密检测及测量场景中,3D通常是与1D、2D技术融合使用,现有2D视觉领导厂商依靠成熟的供应链以及深厚的行业Know-How,依然会主导行业发展,领先的企业有:基恩士、奥普特、大恒图像、凌云光等。国内3D工业视觉企业主要集中设备组装和集成环节,依靠性价比、深度定制以及服务能力赢得市场,但其主要核心零部件(机器人运动算法、应用工艺包,3D工业相机)主要为外购。
在移动机器人引导应用中,内资初创型3D视觉厂商处于领先地位。目前大部分企业集中在机械臂进行分拣、上下料等场景,代表企业:梅卡曼德、图漾科技、熵智科技、迈德威视、知象光电、埃尔森、海康机器人、迁移科技、如本科技等。以视觉为主要导航方式的移动机器人在国内还较少,有:海康机器人、灵动科技、马路创新、蓝芯科技等。